
Safety and Liveness Progress and Preservation Errors and Exceptions

Safety and Liveness;
Progress and Preservation;

Errors and Exceptions

Rob Sison
UNSW

Term 3 2024

1

Safety and Liveness Progress and Preservation Errors and Exceptions

Trace Properties

Given a small step semantics 7→, a trace is sequence of states:

σ1 7→ σ2 7→ σ3 7→ · · · 7→ σn

representing the evaluation of a program.

Some traces are finite, others infinite. To simplify things, we’ll
make all traces infinite by repeating the final state of any finite
trace.

A trace property of a program is a set of traces.

2

Safety and Liveness Progress and Preservation Errors and Exceptions

Safety vs Liveness

1 A safety property: something bad neverbad never happens,
e.g.

I will never run out of money.I will never have over $1000.

These are properties that may be violated by a finite prefix of
a trace.

2 A liveness property: something good eventuallygood
eventually happens, e.g.

I will eventually have over $1000.I will eventually run out of money.

These are properties that cannot be violated by any finite
prefix of a trace.

3

Safety and Liveness Progress and Preservation Errors and Exceptions

Combining Properties

Safety properties we’ve seen before

Static semantics properties Partial correctness (Hoare Logic)

Liveness properties we’ve seen before

Termination

Theorem (Alpern & Schneider, 1985)

Every trace property is the intersection of a safety property and a
liveness property.

Note: Not everything of interest is a (single-)trace property.
(e.g. Confluence and confidentiality compare multiple traces.)

4

Safety and Liveness Progress and Preservation Errors and Exceptions

Types
What sort of properties do types give us?
Adding types to λ-calculus eliminates terms with no normal forms.

(x : τ) ∈ Γ

Γ ⊢ x : τ

x : τ1, Γ ⊢ e : τ2

λx . e : τ1 → τ2

Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ1

Γ ⊢ e1 e2 : τ2

Remember (λx . x x) (λx . x x)? Trying to type this requires an
infinite type τ1 = τ1 → τ2.

Theorems

Every well-typed λ-term has a normal form (normalisation).
Furthermore, every reduction sequence for a well-typed λ-term has
a normal form (strong normalisation).

This means that all typed λ-terms terminate!

5

Safety and Liveness Progress and Preservation Errors and Exceptions

With Recursion

MinHS, unlike lambda calculus, has built in recursion. We can
define terms like:

(recfun f :: (Int → Int) x = f x) 3

Which has no normal form or final state, despite being typed.
What now?

The liveness parts of the typing theorems can’t be salvaged, but
the safety parts can...

6

Safety and Liveness Progress and Preservation Errors and Exceptions

Type Safety

Type safety is the property that states:

Well-typed programs do not go wrong.

By “go wrong”, we mean reaching a stuck state—a non-final state
with no outgoing transitions.
What are some examples of stuck states?

There are many other definitions of things called “type safety” on
the internet. For our purposes, ignore them.

7

Safety and Liveness Progress and Preservation Errors and Exceptions

Progress and Preservation

We want to prove that a well-typed program either goes on forever
or reaches a final state. We prove this with two lemmas.

How to prove type safety

1 Progress, which states that well-typed states are not stuck
states. That is, if an expression e : τ then either e is a final
state or there exists a state e ′ such that e 7→ e ′.

2 Preservation, which states that evaluating one step preserves
types. That is, if an expression e : τ and e 7→ e ′, then e ′ : τ .

e1 : τ

progress

7→ e2 : τ

preservation

progress

7→ e3 : τ

preservation

progress

7→ · · ·

8

Safety and Liveness Progress and Preservation Errors and Exceptions

In the real world

Which of the following languages are type safe?

C

C++

Haskell

Java

Python

Rust

MinHS

Why is MinHS not type safe?

9

Safety and Liveness Progress and Preservation Errors and Exceptions

Division by Zero

We can assign a type to a division by zero:

(Num 3) : Int (Num 0) : Int

(Quot (Num 3) (Num 0)) : Int

But there is no outgoing transition from this state (nor is it final)!
⇒ We have violated progress.
We have two options:

1 Change the static semantics to exclude division by zero.
This reduces to the halting problem, so we would be forced to
overapproximate.

2 Change the dynamic semantics so that the above state has
an outgoing transition.

10

Safety and Liveness Progress and Preservation Errors and Exceptions

Our Cop-Out
Add a new state, Error, that is the successor state for any partial
function:

(Quot v (Num 0)) 7→M Error

Any state containing Error evaluates to Error:

(Plus e Error) 7→M Error (Plus Error e) 7→M Error

(If Error t e) 7→M Error

(and so on – this is much easier in the C machine!)

11

Safety and Liveness Progress and Preservation Errors and Exceptions

Type Safety for Error

We’ve satisfied progress by making a successor state for partial
functions, but how should we satisfy preservation?

Error : τ

That’s right, we give Error any type.

12

Safety and Liveness Progress and Preservation Errors and Exceptions

Dynamic Types

Some languages (e.g. Python, JavaScript) are called dynamically
typed. We call these unityped, as they achieve type safety with a
trivial type system containing only one type, here written ⋆:

Γ ⊢ e : ⋆

⋆ vs. Dynamic Types

Things these languages call “types”, e.g. int or dict in Python,
are part of a value’s runtime representation. They aren’t
represented in the language’s static semantics.

They achieve type safety by defining execution for every
syntactically valid expression, even those that are not well typed.

13

Safety and Liveness Progress and Preservation Errors and Exceptions

Exceptions

Error may satisfy type safety, but it’s not satisfying as a
programming language feature. When an error occurs, we may
want a way to recover. We will add more fine grained error control
– exceptions – to MinHS.

Example (Exceptions)

try/catch/throw in Java, setjmp/longjmp in C,
try/except/raise in Python.

Exceptions Syntax

Raising an Exception Handling an Exception
Concrete raise e try e1 handle x ⇒ e2
Abstract (Raise e) (Try e1 (x . e2))

14

Safety and Liveness Progress and Preservation Errors and Exceptions

Informal Semantics
Example

try
if y ≤ 0 then
raise DivisorError

else
(x/y)

handle err ⇒ −1

For an expression (try e1 handle x ⇒ e2) we
1 Evaluate e1
2 If raise v is encountered while evaluating e1, we bind v to x

and evaluate e2.

Note that it is possible for try expressions to be nested.

The inner-most handle will catch exceptions.
Handlers may re-raise exceptions.

15

Safety and Liveness Progress and Preservation Errors and Exceptions

Static Semantics

The type given to exception values is usually some specific blessed
type τE that is specifically intended for that purpose. For example,
the Throwable type in Java. In dynamically typed languages, the
type is just the same as everything else (i.e. ⋆).

Typing Rules

Γ ⊢ e : τE

Γ ⊢ (Raise e) : τ

Γ ⊢ e1 : τ x : τE, Γ ⊢ e2 : τ

Γ ⊢ (Try e1(x . e2)) : τ

16

Safety and Liveness Progress and Preservation Errors and Exceptions

Dynamic Semantics
Easier to describe using the C Machine. We introduce a new type
of state, s ≺≺ v , that means an exception value v has been raised.
The exception is bubbled up the stack s until a handler is found.

Evaluating a Try Expression
s ≻ (Try e1 (x . e2)) 7→C (Try □ (x . e2)) ▷ s ≻ e1

Returning from a Try without raising
(Try □ (x . e2)) ▷ s ≺ v 7→C s ≺ v

Evaluating a Raise expression
s ≻ (Raise e) 7→C (Raise □) ▷ s ≻ e

Raising an exception
(Raise □) ▷ s ≺ v 7→C s ≺≺ v

Catching an exception
(Try □ (x . e2)) ▷ s ≺≺ v 7→C s ≻ e2[x := v]

Propagating an exception
f ▷ s ≺≺ v 7→C s ≺≺ v

17

Safety and Liveness Progress and Preservation Errors and Exceptions

Efficiency Problems

The approach described above is highly inefficient. Throwing an
exception takes linear time with respect to the depth of stack
frames!
Only the most simplistic implementations work this way. A more
efficient approach is to keep a separate stack of handler frames.

Handler frames

A handler frame contains:

1 A copy of the control stack above the Try expression.

2 The exception handler that is given in the Try expression.

We write a handler frame that contains a control stack s and a
handler (x . e2) as (Handle s (x . e2)).

18

Safety and Liveness Progress and Preservation Errors and Exceptions

Efficient Exceptions

Evaluating a Try now pushes the handler onto the handler stack
and a marker onto the control stack.

(h, s) ≻ (Try e1 (x . e2)) 7→C (Handle s (x . e2) ▷ h, (Try □) ▷ s) ≻ e1

Returning without raising in a Try block removes the handler
again:

(Handle s (x . e2) ▷ h, (Try □) ▷ s) ≺ v 7→C (h, s) ≺ v

Raising an exception now uses the handler stack to immediately
jump to the handler:

(Handle s (x . e2) ▷ h, (Raise □) ▷ s ′) ≺ v 7→C (h, s) ≻ e2[x := v]

19

Safety and Liveness Progress and Preservation Errors and Exceptions

Exceptions in Practice

Exceptions are useful, but they are a form of non-local control flow
and should be used carefully.
In Haskell, exceptions tend to be avoided as they make a liar out of
the type system:

head :: [a] → a

In Java, checked exceptions allow the possibility of exceptions to
be tracked in the type system.

Monads

One of the most common uses of the Haskell monad construct is
for a kind of error handling that is honest about what can happen
in the types.

20

	Safety and Liveness
	

	Progress and Preservation
	

	Errors and Exceptions
	

